
In the course of the explosive experiments with EMG, it was establlshed that the dis- 
placement of the loops leads to the appearance of electrical breakdow~ in the working volume 
of the EMG and lowers the magnitude of the final current. Electrical breakdown was eliminated 
by decreasing the axial displacement of the loops by lowering the magnitude of the initial 
current and decreasing its rise time and by insulating the loops. The adopted measures made 
it possible to increase the magnitude of the final current in the structure studied from 0.8 
to 1.4 MA, i.e., by a factor of 1.7. 
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INTERACTION BETWEEN A NONUNIFORMLY HEATED DIELECTRIC AND A 

MICROWAVE FIELD 

A. G. Merzhanov, V. A. Raduchev, 
and E.N. Rumanov 

UDC 537.226:536.421+536.46 

By using the abrupt growth of electrical conductivity with temperature, the authors of 
[I] accomplished the melting of a dielectric due to heat transfer to the solid phase from the 
melt absorbing hf power. The thermal regime of interphasal boundary motion during direct cur- 
rent heating of a melt and during induction heating was examined in [2]. In this paper, the 
structure of the heat wave is investigated, which is formed in the neighborhood of the melt 
during microwave heating. The thermal flux and field distribution is studied, and the limit 
values are determined for the parameter for which the thermal stability of the melt domain 
still holds. 

I. If a melt section is produced in a waveguide with a dielectric filler* and power is 
fed from a microwave generator, then the melt will be heated by absorbing this power, will 
heat adjacent layers of the solid phase, and melt them. Therefore, the melt domain is prop- 
agated along the waveguide toward the generator. Because of secondary heat losses, this 
domain will be bounded. Motion of the melt boundary along the waveguide recalls propagation 
of a gaseous microwave discharge investigated in [3]. A problem of the light combustion wave 
in a solid dielectric, which is similar in formulation, was examined in [4]. However, the 
presence of a phase transition (accompanied by a jump in conductivity) results in a front 
structure and regularities of its propagation that differ from [3, 4], as will be shown. 

Heating of the solid phase of the dielectric occurs because of the intrinsic absorption 
of microwave power as well as because of heat influx from the melt. The main part of the 
heat is liberated near the melt (at temperatures close to the melting point). Therefore, it 
can be considered that an "intrinsic" heat liberation source acts in a certain solid phase 
layer adjacent to the melt. The density of the power being liberated in the solid phase is 
small compared with the density of the power being liberated in the melt. However, it is 
generally impossible to neglect it since the ratio between the widths of the heat liberation 
domains in the solid and liquid phases is unknown in advance. It should be determined from 

*For sufficient dielectric permittivity of the substance simply a rod can be considered that 
will be a dielectric waveguide. 
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the solution of the problem together with the velocity of the melting wave. The total heat 
liberation power in the solid dielectric can here be a quantity that is not small compared 
with the total power being liberated in the melt. 

Depending on the microwave generator power, thermal wave propagation over a waveguide 
can occur in different regimes. For a sufficient magnitude of the delivered power a part of 
the heat liberated in the melt will go directly into melting the substance, and a part into 
heating the solid phase. The width of the heated solid phase layer is inversely proportional 
to the wave velocity and depends on the power absorbed by the dielectric. This latter is 
determined by the electromagnetic field distribution which depends, in turn, on the width of 
the heated layer. Therefore, an inverse relation holds between the electromagnetic and the 
thermal processes. As the microwave generator power diminishes below a certain critical val- 
ue, the melt freezes, and a thermal wave similar to that considered in [3] propagates over the 
solid dielectric. That the heat flux from the melt becomes zero in the solid phase corre- 
sponds to the condition of a change of regime. 

2. The electric field in a waveguide is complex in nature. However, since the purpose 
of this paper is just qualitative estimates, in place of real waveguide modes we will con- 
sider, as in [3], a plane wave according to the equation 

d2Ee~-'--~ k2 -~o~2 ~" 4~a (r)] ( 2 . 1 )  + k2E = O, = - -W-  ], 

where E i s  t he  e l e c t r i c  f i e l d  i n t e n s i t y ,  ~0 i s  t h e  r e a l  p a r t  of  t he  d i e l e c t r i c  p e r m i t t i v i t y ,  
which is  c o n s i d e r e d  i n d e p e n d e n t  o f  the  t e m p e r a t u r e  f o r  s i m p l i c i t y ,  and o i s  t he  s p e c i f i c  c o n -  
d u c t i v i t y  o f  t he  d i e l e c t r i c .  

The h e a t - c o n d u c t i o n  e q u a t i o n  d e s c r i b i n g  o n e - d i m e n s i o n a l  s t a t i o n a r y  m e l t i n g  wave p r o p a g a -  
t i o n  o v e r  a wavegu ide  w i t h o u t  t a k i n g  a c c o u n t  of  s e c o n d a r y  h e a t  l o s s e s  has  t he  form 

d L dr~ dr i ~(T)IE]~ O, (2 .2 )  
cpv + T 

where x is the coordinate, T is the temperature, I, c, p is the heat conduction, specific 
heat, and density of the dielectric, and v is the wave velocity. 

The boundary conditions for system (2.1) and (2.2) are 

x - - + - - o o ,  T = To, E = Eo e i~  + B ~ i k x  
x--*- + c o ,  dT/dz  = O, E = O, 

E0 i s  the  g i v e n  a m p l i t u d e  o f  t he  i n c i d e n t  e l e c t r o m a g n e t i c  wave a t  t he  waveguide  i n p u t ,  and g 
i s  t h e  unknown a m p l i t u d e  of  t he  r e f l e c t e d  wave.  

T h e r e f o r e ,  t h e r e  i s  a s e l f - c o n s i s t e n t  p r o b l e m :  a c c o r d i n g  to  ( 2 . 2 )  t h e  t e m p e r a t u r e  p r o f i l e  
in t he  t h e r m a l  wave depends  on t he  e l e c t r i c  f i e l d  d i s t r i b u t i o n ,  which i s  d e t e r m i n e d ,  in  t u r n ,  
by t h e  t e m p e r a t u r e  d i s t r i b u t i o n  ( 2 . 1 ) .  

3. Sys tem ( 2 . 1 ) ,  ( 2 .2 )  does  no t  a l l o w  an e x a c t  a n a l y t i c a l  s o l u t i o n .  To c o n s t r u c t  the  
a p p r o x i m a t e  s o l u t i o n ,  the  w i d e l y  known method f rom c o m b u s t i o n  t h e o r y  i s  u s e d ,  o f  " c u t t i n g  o f f "  
t he  h e a t  l i b e r a t i o n  f u n c t i o n  in t h e  h e a t - c o n d u c t i o n  e q u a t i o n  [ 5 ] .  Because  o f  t he  e x p o n e n t i a l  
t e m p e r a t u r e  dependence  o f  t h e  c o n d u c t i v i t y  o f  a s o l i d  d i e l e c t r i c ,  t he  h e a t  l i b e r a t i o n  power 
t h e r e i n  d rops  r a d i c a l l y  w i t h  t he  d i m i n u t i o n  in  t e m p e r a t u r e .  We s h a l l  c o n s i d e r  a l l  t he  h e a t  
in t he  s o l i d  phase  t o  be l i b e r a t e d  j u s t  w i t h i n  the  c h a r a c t e r i s t i c  t e m p e r a t u r e  r a n g e  T b < T < 
T 1 (T b = T 1 -- T~/A, where 5 i s  t h e  wid th  of  t he  d i e l e c t r i c  f o r b i d d e n  band ,  and T 1 i s  t he  m e l t -  
ing  p o i n t ) .  Because  of  t h e  s k i n  e f f e c t  t he  h e a t  in t he  mel t  i s  l i b e r a t e d  in a n a r r o w  s u r f a c e  
l a y e r  of  wid th  ~. A c o n s t a n t  t e m p e r a t u r e  Tm is  m a i n t a i n e d  in  the  r e s t  o f  the  mel t  ( s i n c e  
t h e r e  i s  n e i t h e r  h e a t  l i b e r a t i o n  no r  h e a t  l o s s ) .  

In  c o n f o r m i t y  w i t h  the  a b o v e ,  the  f o l l o w i n g  domains can be s e p a r a t e d  out  ( F i g .  1) in the  
d i e l e c t r i c :  

x < O, T < Tb i s  the  h e a t i n g  zone 1; 

0 < x < l ,  T b < T < T 1 i s  t he  h e a t  l i b e r a t i o n  zone i n t o  the  s o l i d  phase  2; 

1 < x < 1 + 6, T 1 < T < T m i s  t he  h e a t  l i b e r a t i o n  zone i n t o  the  me l t  3 ;  

x > 1 + 6, T = Tm i s  t he  zone w i t h o u t  h e a t  l i b e r a t i o n  and h e a t  l o s s  4 .  
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The source functions and X in (2.2) within the limits of each zone are replaced by their 
mean values (for the given zone)~ The boundary conditions are 

x - -+- -oo ,  T--'~To, ~ = 0 ,  T Tb' ql =q2'  (3.1) 

x~-- l~ ,T = Tz, q~ =~q~ q- 'pvL, x = - l  q - 8 , T  = T~, d T / d x = O ,  

qj is the heat flux through unit areas in the j-th zone, L is the melting heat of tlhe di- 
electric. Solving the piecewise-linear system (2.2) with the boundary conditions (3.1), the 
temperature profile (Fig. I, curve a) and the distribution of the heat flux qj = Xj(dT/dx). 

Under the condition 

q2(X =i / )  = 0 ( 3 . 2 )  

a l l  t h e  h e a t  b e i n g  l i b e r a t e d  in  t h e  m e l t  w i l l  go i n t o  m e l t i n g  t h e  s u b s t a n c e  w h i l e  h e a t i n g  
of  t h e  s o l i d  p h a s e  o c c u r s  b e c a u s e  of  t h e  i n t r i n s i c  h e a t  l i b e r a t i o n  s o u r c e  Qs.  C o n d i t i o n  
( 3 . 2 )  d e t e r m i n e s  t h e  c r i t i c a l  v a l u e  of  t h e  power  b e i n g  d e l i v e r e d  t o  t h e  w a v e g u i d e  i n p u t  f r o m  
t h e  mic rowave  g e n e r a t o r  s i n c e  m e l t  c r y s t a l l i z a t i o n  o c c u r s  a s  i t  i s  r e d u c e d  f u r t h e r .  The r e -  
l a t i o n s h i p s  

l L 2?X,v-1, v = (2yz~iQJcp)I/2(T,--ro)-'] ', Q 6  =ipvL (3.3) 

a r e  o b t a i n e d  f r o m  ( 3 . 1 )  and ( 3 . 2 ) ,  where  y = (T~ /A) (T  l - - T o )  - 1 ,  • i s  t h e  t h e r m a l  d i f f u s i v i t y  
of  t h e  s o l i d  d i e l e c t r i c ,  Q i s  t h e  p o w e r  of  h e a t  l i b e r a t i o n  p e r  u n i t  vo lume ,  and t h e  s u b s c r i p t  
s d e n o t e s  t h a t  t h e  q u a n t i t y  b e l o n g s  to  t h e  s o l i d  p h a s e .  Sys t em ( 3 . 3 )  o f  t h r e e  e q u a t i o n s  does  
n o t  d e t e r m i n e  t h e  f o u r  unknowns v ,  l ,  Qs,  and Q. The m i s s i n g  f o u r t h  r e l a t i o n s h i p  can  be o b -  
t a i n e d  f r o m  t h e  " e l e c t r i c a l "  e q u a t i o n  ( 2 . 1 )  by  s o l v i n g  i t  in c o n f o r m i t y  w i t h  t h e  m e l t i n g  wave 
model  t a k e n  f o r  a c o n s t a n t  v a l u e  o f  z w i t h i n  t h e  l i m i t s  o f  e a c h  zone .  The s o l u t i o n  in  t h e  
j - t h  zone  h a s  t h e  f o r m  

E / = a j e  " + Bje " ,  

where  Aj and Bj a r e  complex  a m p l i t u d e s  of  t h e  i n c i d e n t  and r e f l e c t e d  waves  t h a t  s h o u l d  be  
found  f r o m  t h e  b o u n d a r y  c o n d i t i o n s .  C o n s i d e r i n g  t h e  i n c i d e n t  wave a m p l i t u d e  a t  t h e  w a v e g u i d e  
i n p u t  t o  b e  t he  g i v e n  q u a n t i t y  A1 = E0 and s e t t i n g  t h e  c o e f f i c i e n t  o f  r e f l e c t i o n  f r o m  t h e  
m e l t  e q u a l  t o  one ( o n l y  f o r  t h e  a p p r o x i m a t e  c o m p u t a t i o n  of  t h e  f i e l d  in  t h e  s o l i d  p h a s e ) ,  
we w r i t e  t h e  c o n t i n u i t y  c o n d i t i o n  f o r  t h e  e l e c t r i c a l  and m a g n e t i c  f i e l d s  on t h e  b o u n d a r y  o f  
zones  1 and 2 in  t h e  f o r m  

E 0 ~-B~ ---- A~[1 - -  exp (2ik2l)]i k~(E o - -  B~) = k2A~[i -t- eXp (2ik~l)], 

from which 

k 1 [t  - e x / ( 2 ) k ~ 0  ] - k s [ t  + exp  (2~k~t)] 
B1 = k 1 It -- exp (2i~2/)i -~ k~ [i -~ exp (2ik21)] EO; (3 .4)  

' , 2k 1 .. " 

A2 'k I [l -- exp (2ik2l)] + k 2 [J~+ exp (2ik2i)] E0" ( 3 . 5 )  

The Poynting vector for the incident electromagnetic wave in the j-th zone is (Sj0, 0, 0) 

$J0 -- (c~/8~r RekjIA j exp (ikjx~)12. (3.6) 
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goes into zone 2 and 

S 2 = (4 --  R)S~o = Q~l H- Q~ (3.7) 

S~ = (4 --  R3)S.,olx=t -= Q6 (3 .8)  

into zone 3, where R is the reflection coefficient, and R3 is the reflection coefficient from 
zone 3. The ratio 

Q, /Q  = 6/-~[(4 - R)(4 --  R3)-I(S~o/S=o[==,)" - -  41 ( 3 . 9 )  

is obtained from (3.7) and (3.8). The reflection coefficient 

R - I B J E o l  s (3.10)  

and R3 can be written in the form 

R ~  = t(k~ - -  k~)l(k3 § k=)l  s 

Expanding  t h i s  l a s t  e x p r e s s i o n  in  a power s e r i e s  in  t h e  smal l  q u a n t i t y  (Os/ (see [6], say). 
o) 1/2 and limiting ourselves to linear terms, we obtain Rz in the form 

�9 Ra = t - -  (a -~- b)(2eoo)/a(~) 1/~, 

where a = R e ~ f t  q- i(4n~/eor b : l E V i  ~- ~(4~os/eoCO) �9 Taking  a c c o u n t  o f  ( 3 . 6 ) ,  
the  e x p r e s s i o n  (3 .9 )  becomes 

Q,IQ = 61-1 [(gr a-1 (a + b)-~(E2o - - I311  s) I As exp (ikil) I,-" - 4 ] .  ( 3 .12 )  

This  i s  i n d e e d  t he  r e l a t i o n s h i p  c l o s i n g  sy s t em  ( 3 . 3 ) .  The re  f o l l o w s  f rom (3.3) 

QJQ = (6c/lL)(Tt - -  To). (3 .  i3)  

E l i m i n a t i n g  t he  r a t i o  Qs/Q f rom (3 .12 )  and ( 3 . 1 3 ) ,  an e q u a t i o n  can  be o b t a i n e d  in  l ,  t he  
w i d t h  of  zone 2: 

Z~ - -  1 B112 -- a (a + b) (2%~/~q)*/= [4 4- ,(c/L) (Tw.-. T~)I IAz exp(ikzl)t s. ( 3 . 1 4 )  

The e x p r e s s i o n s  f o r  t he  complex  a m p l i t u d e s  Bz and A2 a r e  g i v e n  by ( 3 . 4 )  and ( 3 . 5 ) .  Computing 
t h e  magn i tude  of  l f rom ( 3 2 1 4 ) ,  v a l u e s  of  v ,  Qs, and Q can be  d e t e r m i n e d  by  means of  ( 3 . 3 ) .  
A f t e r  c a l c u l a t i n g  t h e  modul i  of  t h e  complex  q u a n t i t i e s  and r e d u c i n g  s i m i l a r  t e r m s ,  ( 3 . 1 4 )  can  
be r e w r i t t e n  in  t he  d i m e n s i o n l e s s  fo rm 

"~t/2(a - -  b)[sh(b~-lz) - -  (b/a) sin (aT-lZ)] : N, ( 3 . 1 5 )  

a = ReVrt  + i~, b = I m V t  -{- t~, 

where z = 8 U O s l S ~ / 2 c o x  i s  t h e  d i m e n s i o n l e s s  t h i c k n e s s  of  zone 2, ~ = 4~Os(~0m) - 1 ,  N = (2Os/  
Z 2 1 o) / [1 + ( c / L ) ( T  l -- T o ) ] .  The q u a n t i t y  Z- can  be  c o n s i d e r e d  as  t h e  d i m e n s i o n l e s s  v e l o c i t y  

of the melting wave since z = 16~YOsxs~ol/2(cov) -I according to (3.3). The dependence of z 
on T computed numerically from (3.15) is shown in Fig. 2 for N = 0.5, 0.2, 0.i, 0.05 (curves 
I-4, respectively). This is substantially the dependence of the critical thickness of zone 2 
(or the minimal velocity of the melting wave) on the field frequency for different materials 
(large N correspond to transition metal oxides, and low N to semiconductors). It is nonmono- 
tonic in nature: as the frequency increases, the wave velocity passes through a maximum. By 
using (3.4), (3.10), and (3.15), the dependence of the reflection coefficient R on T and N 
can be computed (Fig. 3, N = 0.05, 0.1, 0.2, 0.5, curves I-4, respectively). 

As the frequency increases, the reflection coefficient diminishes (therefore the effi- 
ciency of the energy contribution increases). In the wavelength range comparable to the 
thickness of zone 2, oscillations in the reflection coefficient are observed because of inter- 
ference phenomena. The wave velocity in this frequency range also oscillates (see Fig. 2). 
Interference oscillations of the absorptivity of metal--oxide systems for laser heating of 
metals in an oxidative medium are described in [7]. 

Knowing the frequency dependences of the velocity (see Fig. 2), and the reflection co- 
efficient (see Fig. 3), the frequency dependence of the minimal energy flux delivered to the 
waveguide input from the microwave generator can be determined. According to (3.3) and (3.7), 
the density of this flux has the following form in dimensionless variables 

P :-- [(4 - -  R)z] -~, ( 3 . 16 )  

(3.11)  

( 3 .10 ) ,  and (3 .11) ,  
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where 
P = (Coe~/V16nw~D ( ~ -  To + L c - ~ ) - l ~  o. 

The series of curves P = P(T, N) is displayed in Fig. 4, where the lines I-4 correspond 
to N = 0.05, 0.1, 0.2, 0.5. If the value of the delivered power flux P0 is below the appro- 
priate curve, the melt vanishes. Formulas from [3] become applicable here to describe the 
thermal wave. As numerical estimates show, the thickness of zone 2 increases upon going over- 
to P0 < P(~, N), while the reflection coefficient drops to practically zero. The wave veloc- 
ity grows, which is related to both the diminution in R and to the absence of heat expenditure 
in the phase transition. The zone 2 in which all the field energy is absorbed, "runs away" 
from zone 3 and the melt freezes. This phenomenon is similar to the passage from tlhe "con- 
trol" regime to "separation" in the theory of multizone combustion [8]. 

4. Adiabatic melting wave propagation over a dielectric waveguide was considered above~ 
The influence of the second heat losses on the fundamental process characteristics (wave ve- 
locity, minimal energy expenditures, maximal melt temperature) can be taken into account if 
the term [--4Bid-IX(T -- T0)] is inserted in the left side of the heat-conduction equation 
(2.2). As mentioned above, the melt domain becomes bounded in the nonadiabatic case. Its 
width depends on the intensity of the heat elimination, i.e., on the Blot criterion Bi. Let 
us limit ourselves to a computation of the Bi for which this width will agree with the width 
of the skin layer 6. The structure of such a melting wave is shown in Fig. I (curwe b). Heat 
elimination from the waveguide surface occurs mainly in zones I and 4 since their width is 
much greater than the widths of zone 2 and 3. Consequently, the secondary heat elimination 
cannot be taken into account in writing the heat-conduction equation in zones 2 and 3. The 
boundary conditions for the first three zones remain as before. For zone 4 they are 

z = z + ~i, T I T,, q~ - -  q~ = p~L; x - > - + ~  S' = S~o. 

Calculations result in an equation for the width of zone 2 that agrees with (3.15); how- 
ever, the parameter N becomes 

N = ((~ A~UI2 [4 ~ (d/L)(T~ -- To)]. \ S # 

The dependences z = z(T, N) and R = R(T, N) represented in Figs. 2 and 3 are valid even for 
the nonadiabatic case. The melting wave velocity is related to the width of zone 2 by the 
relat ionship 

v = 2 7 X 8 / - I [ i  i 2Lc : l (~ - - i ro )  -11-1" 

The maximal t e m p e r a t u r e  of  the  me l t  i s  

rm = r~ + (Q8~/8~)., 

The mean h e a t  l i b e r a t i o n  power d e n s i t i e s  in  t he  s o l i d  phase  and in the  m e l t  a re  

q~ = Z%,/'2(rl - To), 
;Q = 2VX:(./6)-I(T~ --  To) [i -t- (c/2L)(Tz, TO)]- !, 

and the corresponding value of the Biot criterion is 

m = 2~(d/t)2[~ + dciL)iiVl ~ r0)]=ll 
A formula that agrees with (3.16) is obtained for the quantity 

P = (coe~/2116g?(l~) (T, -- To)-~ [2 4- (~IL) (Tz -- T0)] [4 4- (C/L) (T~--To)]:-i S~o 



so that the results represented in Fig. 4 retain their value. 

In conclusion, it should be noted that insertion of a sharp boundary between zones I and 
2 as well as the approximation R3 = I will increase the reflection coefficient R. Hence, the 
computed value of the energy flux Sl0 should be considered an upper bound. 
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MOTION OF A CURRENT-CARRYING PLASMA SHELL IN A RAREFACTION WAVE 

V. S. Komel'kov, A. P. Kuznetsov, 
and A. S. Pleshanov 

UDC 533.9.07 

The paper is an extension of the research of [I, 2]. In [2] it was shown, both experi- 
mentally and theoretically, that a plasma shell generated by a coaxial accelerator can also 
be accelerated beyond the limits of the coaxial section. The existence of limits to such 
acceleration was also indicated there. It turned out that high parameters of the accelerated 
plasma can be obtained (at currents of order I MA) only when the gas filling the accelerator 
has a relatively low density (a number of hydrogen atoms n < 1017 I/cm3). For the experiment 
described in [I, 2] the interelectrode space must be filled with a gas having a density an 
order of magnitude greater than that at which it is possible to obtain a high-temperature 
plasma. A conflict arises between the demands for performing the experiment and the condi- 
tions for obtaining high-parameter plasma formations. This conflict can be eliminated, in 
our view, if the plasma is accelerated in a rarefaction wave propagating opposite to the mo- 
tion of the plasma shell. With the appropriate synchronization of the motion of the plasma 
and the rarefaction wave one can assure the development of a discharge and the formation of a 
shell in a sufficiently dense gas, while the plasma acceleration occurs, as in [2, 3], beyond 
the cut of the accelerator in the considerably less dense medium formed by the rarefaction 
wave. 

The present work was devoted to a numerical investigation of the possibilities of such 
plasma acceleration. One of the possible schemes for it is presented in Fig. I, where I is 
the coaxial accelerator with energy storage, 2 is the accelerator chamber, 3 is a diaphragm 
that opens, and 4 is the evacuated section. In such an apparatus the process develops as 
follows. The coaxial accelerator ejects into the accelerator chamber a plasma cluster which 
is formed under the action of the current flowing into the shell (Fig. 2). At a certain in- 
stant the diaphragm is opened and a rarefaction wave is formed, in which the current-carrying 
shell to be accelerated moves. 

Statement of the Problem 

We consider only the process taking place beyond the cut of the coaxial plasma accelera- 
tor. The plasma emitted from the accelerator consists of an axisymmetric shell formed by the 
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